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Research Experience

* Supervisor: Prof. Huan Wang @ ENCODE Lab, Westlake

* Research Focus: Efficient Pruning For Diffusion
* Outcome:

1. SparAlloc (Opensource Project)

2. OBS-Diff (ICLR 2026, lead author)

3. CR-Diff (Under Review, co-first author)

* Supervisor: Prof. Ziwel Liu @ MMLab, NTU

 Research Focus: Inference Acceleration For VLM




[ICLR 2026] OBS-Diff:
Accurate Pruning For Diffusion Models in One-Shot
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Qualitative comparison of unstructured pruning methods on the llustration of the proposed OBS-Diff framework applied to the MMDIT architecture.

SD3-Medium model.

* Proposed OBS-Diff by surveying OBS literature and designing a Timestep-Aware Hessian and Module Package
strategy to address iterative error accumulation and minimize calibration costs.

* Developed a versatile framework compatible with U-Net (SDXL) and MMDIT (SD3.5) architectures, supporting
unstructured, semi-structured, and structured pruning within a unified codebase.

* Achieved training-free, one-shot pruning on large-scale models, maintaining competitive FID/CLIP scores even at
30% structured sparsity and significantly outperforming SOTA methods.



[Under Review] Cross-Resolution Diffusion Models via

Network Pruning

* During the development of
OBS-Diff, i1dentified that
simple magnitude
unstructured pruning
could enhance image
generation capabilities at
non-default resolutions.

* CR-Diff repurposes
network pruning to
enhance generalizability by
removing "adverse weights"
that cause degradation at
non-default resolutions.
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